Estradiol cypionate aided treatment for experimentally induced ascending placentitis in mares

Bruna R. Curcio a,b,*, Igor F. Canisso a,b*, Fernanda M. Pazinato*, Luciana A. Borba*, Lorena S. Feijo*, Vitoria Muller a, Ilusca S. Finger a, Ramiro E. Toribio c, Carlos E.W. Nogueira a

aDepartamento de Clinica Veterinaria, Faculdade de Medicina Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil.
bDepartment of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana IL 61802, USA.
cDepartment of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
*Co-correspondent authors: bruna@illinois.edu and canisso@illinois.edu

Abstract

The overall goal of this study was to assess the efficacy of various therapeutic combinations of a long-acting estrogen (estradiol cypionate; ECP) and a long-acting progestin (altrenogest; ALT) in addition to basic treatment for placentitis with trimethoprim-sulfamethoxazole and flunixin meglumine (TMS+FM). Specific aims for this experiment were to evaluate time from induction of bacterial placentitis to delivery, gestational length, and foal parameters (high-risk, survival, and birth weight). Pregnant mares (300 d gestation, n=46) were randomly split into healthy mares (control group, CONT, n=8) and mares with experimentally induced ascending placentitis (n=38). Placentitis was induced via intracervical inoculation of Streptococcus equi subspecies zooepidemicus. Thereafter, induced mares were randomly assigned into: (1) TMS+FM (n=8); (2) TMS+FM+ALT (n=8); (3) TMS+FM+ALT+ECP (n=6); (4) TMS+FM+ECP (n=6); and (5) no treatment (INOC, n=10). Treatments were started 48 h after bacterial inoculation and carried out for 10 consecutive days. All mares had blood sampled collected and were assessed for signs of placentitis daily until the mare delivered, or for 10 d after that. Steroids were analyzed via RIA. Continuous data were analyzed by ANOVA, and categorical data analyzed by Fisher’s exact test. Significance was set at p<0.05. The foal survival at parturition and 7 d post-delivery were similar across treated groups (66.7-100%), and to the CONT group. Similar to CONT, TMS+FM+ECP had no high-risk foals; other treated groups had higher incidences (50-75%) (p<0.05). The inclusion of ECP in the treatments resulted in foals with body weight similar to CONT group (p>0.05). There were no group effects or time by group interactions on concentrations of steroids assessed herein (p>0.05). In conclusion, in addition to TMS+FM mares with experimentally induced ascending placentitis benefited from ECP. Conversely, ALT did not appear to make a difference in outcomes.

Keywords: pregnancy loss, foal survival, placental pathology, estrogen, progestins
1. Introduction

Ascending placentitis is one of the important causes of abortion, stillbirth and premature delivery of weak foals [1-3]. While there are regional variations in the bacterial and fungal agents associated with ascending placentitis in mares, β-hemolytic streptococci (Streptococcus equi subspecies zooepidemicus and Streptococcus equisimilis), and coliforms such as Escherichia coli are the predominant isolates worldwide [1,4-6].

In ascending placentitis infection begins at the caudal placental pole (cervical star region), then bacteria spread ventrally towards the uterine body segments of the chorioallantois and gains access to the fetus either by migrating through umbilical vessels or through fetal fluids [6-8]. Placentitis is characterized by the production of pro-inflammatory cytokines such as IL-6 and IL-8, and prostaglandins (PGF2α and PGE2) [9,10]. Prostaglandin release increases uterine contractility and consequently increasing the risk of premature delivery [11].

Inflammation and infection of the fetoplacental unit can induce premature activation of the fetal hypothalamic-pituitary-adrenal axis, thus accelerating fetal maturation [6,11,12]. This activation may promote fetal development and maturation before parturition. Thus, early fetal maturation likely counterbalances premature delivery and may help improving the odds for foal survival [6,11]. It is worth noting that among farm animals, maturation of the equine fetus occurs latest in gestation [13]. This implies that any event that interferes with the normal function of the fetal-maternal unit such as placentitis or maternal disease could be devastating to the newborn foal.

Clinical diagnosis of ascending placentitis is based on the presence of premature udder development with/without lactation, vulvar discharge, and ultrasonographic evidence of chorioallantois edema and detachment from the uterus at the caudal placental pole [14,15]. While overt clinical cases of ascending placentitis can be easily diagnosed, subtle and early cases can be missed using standard diagnostic means [6]. Recently, several molecular markers, including serum amyloid A, haptoglobin, 17β-estradiol, and alpha-fetoprotein have been identified as useful diagnostic tests for experimentally induced placentitis [16-21]. Some of these molecules are also suitable markers for spontaneous placentitis [20].

The equine fetoplacental unit is an intricate system involving the mare endometrium, the fetus, and the fetal membranes, where large quantities of steroids (estrogens, progestogens, and androgens) are produced and metabolized [18,22,23]. While the function of most equine fetoplacental steroids remains unknown, several studies have evaluated their concentrations to assess fetal well-being and placental health [12,18,24-26]. However, limited work has been carried out to determine the validity of using these steroid hormones as prognostic indicators in response to treatment of placentitis. Douglas [24] suggested that mares after 100 days of gestation with low
serum estrogen concentrations (<700 pg/mL), as determined by a commercial assay called “total-estrogens,” were prone to abortion, whereas serum estrogen concentrations >1000 pg/mL resulted in the delivery of a live foal. In mares with experimentally induced placentitis, progesterone concentrations were remarkably reduced in mares aborting in less than 7 d compared to mares sustaining the pregnancy more than 8 d post induction [25].

Treatment for bacterial placentitis is aimed at (i) eliminating or reducing the spread of microorganisms through the fetal membranes and fetus, (ii) keeping the uterus quiescent, and (iii) reducing the inflammatory response [6,27]. It has been suggested that these goals can be accomplished by treating mares with antimicrobials (i.e. combination of penicillin and gentamicin, or trimethoprim-sulfamethoxazole), progestins (altrenogest or progesterone), and anti-inflammatories (flunixin meglumine, phenylbutazone, acetylsalicylic acid, pentoxifylline) [6,27-29]. If the treatment goals are accomplished, the gestation length of mares affected with placentitis should be similar to the expected normal duration of pregnancy (~330-340 d) and result in a live, well-developed foal with minimal health issues.

A number of controlled studies have shown the value of antimicrobial drugs, drug selection (ability to cross membranes, spectrum, potential toxicity to the fetus), duration of therapy, as well as immunomodulators in the treatment of experimentally induced ascending placentitis in mares [28-32]. However, the role of steroids (estrogens and progestins) in the treatment of placentitis is poorly defined. Progestins have been included in multiple placentitis studies [26,29-32], and one report failed to achieve an improvement in foal survival with altrenogest treatment [30]. However, it remains to be determined if progestins are beneficial for the treatment of placentitis. Estrogen therapy has been advocated as a necessary treatment for equine placentitis to reduce the risk of abortion [24]. Despite its anecdotal use in equine practice for years [24], to date, the treatment of placentitis with estrogens has not been critically evaluated under controlled experimental conditions.

The overall goal of this study was to assess the efficacy of various therapeutic combinations of a long-acting estrogen (estradiol cypionate; ECP) and a long-acting progestin (altrenogest; ALT) in addition to a basic treatment for placentitis with trimethoprim-sulfamethoxazole and flunixin meglumine (TMS+FM). Specific aims for this experiment were to evaluate (i) time from induction of placentitis to delivery, gestational length, and foal parameters (high-risk, survival, and birth weight); and (ii) serum steroid concentrations (progesterone, 17α-hydroxyprogesterone, 17β-estradiol, and cortisol) in response to treatment. Our primary hypothesis was that the different treatment combinations (in particular ECP) would affect pregnancy outcomes and newborn foal parameters. It was our expectation that the information obtained from the present study would enhance our understanding of the efficacy of various drugs and drug combinations in the treatment of equine placentitis.
2. Materials and methods

2.1. Mares and animal husbandry

All procedures carried out in the present study were approved by the Ethical Committee on Animal Experimentation of the Universidade Federal de Pelotas (UFPel) under protocol # 4750. Animal procedures carried out herein followed the directives of the European Union Directive (2010/63/EU) for animal experimentation. The mares were housed at Palma Farm of the UFPel, Capão do Leão, Rio Grande do Sul, Brazil. Forty-six pregnancies from 27 mares multiparous Criollo and Criollo-type (age 10 ± 2 y; parity 3 ± 0.5; body weight 437 ± 22 kg) were used in the experiment. None of the mares had history of subfertility or pregnancy failure. Ovulation was determined by transrectal palpation and ultrasonography examinations performed every other day. All mares were bred via artificial insemination with fresh semen from a single fertile Criollo stallion (1.72 breeding/conception). Mares were maintained on pasture and supplemented with commercial concentrate pellets and water ad libitum. Before foaling, mares were kept in individual stalls at night and on pasture during the day. This study was carried out during the breeding season of the Southern Hemisphere from September – December for the years of 2012, 2013, and 2014.

2.2. Study design and therapeutic regimens

By 300 d of gestation, mares carrying normal pregnancies (mean 301.7 ± 2.7, range 295-303 d), were randomly divided into healthy mares (control group, CONT, n=8); and mares with experimentally induced ascending placentitis (n=38). Before the beginning of the study, all mares had reproductive examination and transrectal ultrasonography of the caudal placental pole performed. Since none of the mares presented outward and overt clinical signs associated with pregnancy abnormalities, all mares were enrolled in this study. Mares with experimentally induced placentitis were randomly assigned to treatment groups as follows: (1) TMS+FM (n=8); (2) TMS+FM+ALT (n=8); (3) TMS+FM+ALT+ECP (n=6); (4) TMS+FM+ECP (n=6); and (5) no treatment (INOC, n=10). Treatment was started at 48 h post experimental induction of ascending placentitis [30] and carried out for 10 d. The duration of treatment was chosen based on the protocol applied in the authors’ practice and after the recommendations published elsewhere [27, 28, 30]. Detailed therapeutic regimens are described below (Table 1).

2.3. Experimental induction of ascending placentitis

Ascending placentitis was experimentally induced via intracervical inoculation of 10^7 colony forming units of Streptococcus equi subspecies zooepidemicus (S. zooepidemicus) as described by Mays and collaborators...
and successfully used by others [16,17,29-32]. The *S. zooepidemicus* strain used in the study reported here was isolated from the chorioallantois of a Thoroughbred mare exhibiting typical clinical and pathological signs of ascending placentitis [1,27]. The isolate was identified using standard microbiological techniques (i.e., β hemolysis on blood agar, Gram-staining, and biochemical characteristics) [33].

The inoculum was aerobically cultured in brain heart infusion medium (BD Diagnostics Systems, Sparks, MD, USA) for 24 h at 37°C. After that, glycerol was added up to a final concentration of 10%, 1.5 mL aliquots were prepared, and cryopreserved in liquid nitrogen until use. Approximately, 48 h preceding the induction of placentitis, an aliquot of frozen bacteria (the stock isolate) was thawed and plated in ovine blood agar for 24 h to confirm the purity of *S. zooepidemicus*. On the day of induction, an inoculum containing 10^7 colony forming units in 1 mL 0.9% saline solution was prepared by the McFarland turbidity standard method for bacterial suspensions (McFarland Turbidity Standard No 0.5, BD Diagnostics Diagnostic Systems, Sparks, MD, USA). The inoculum was deposited midway through the cervix with an equine artificial insemination pipette, using digital guidance. After cervical inoculation, bacterial viability was confirmed by culturing the content of each vial.

2.4. Blood sampling and monitoring

Blood samples were collected by jugular venipuncture from all mares immediately before induction of placentitis and then daily for consecutive 10 d, or until premature delivery (i.e. blood sampling was discontinued after delivery). Blood samples were let to clot and then centrifuged at 600 × g for 10 min. Serum was harvested and preserved at -20°C until further analysis.

Transrectal ultrasonography of the caudal placental pole was performed daily to measure the combined thickness of uterus and placenta (CTUP) and to assess for signs of chorioallantois separation from the endometrium [15,34,35]. All mares had daily assessments for the presence of mammary gland development and vulvar discharge.

2.5. Foaling management and post-partum mare and foal care

From 30 d before the estimated foaling date (i.e. 330 d for the Criollo breed) mares were maintained in paddocks nearby the foaling barn. When imminent foaling was observed, mares were brought inside foaling stalls (6 × 6m) for assisted delivery. During the second stage of labor, a subset of mares (n=30) had amniotic fluid collected aseptically via aspiration with a sterile needle and syringe. Amniotic fluid was aerobically cultured as described above. All mares were closely monitored until the passage of the fetal membranes. Immediately after
placental release and by 24 h post-delivery, a subset of mares (n=26) had uterine swabs aseptically collected for aerobic cultures as aforementioned (subheading 2.3) [33].

Immediately after delivery, all foals had a full physical examination and body weight recorded. Within 15 min after parturition, foals delivered alive had blood collected by venipuncture of the jugular vein, for determination of leukocyte counts (reference ranges 5.3-16.8 × 10^3 cell/µL, neutrophil: lymphocyte ratio <2:1), and fibrinogen concentration (≤ 400 mg/dL) [36]. Total leukocyte counts were determined using a commercial cell counter (Sysmex pocH-1000™ Hematology-Analyzer, Sysmex Brazil), and smears were prepared for differential leukocyte counts. Fibrinogen was determined by heat precipitation. Demeanor for each foal was carefully assessed immediately after delivery. Foals able to breathe without assistance (<2 min), assumed sternal recumbence (<5 min), exhibited suckling reflex (<20 min) and stood with no or minimal assistance (<1 h) were classified as low-risk (apparently health) at birth [36]. Foals classified as high-risk required major assistance and showed clinical signs of immaturity (silky hair-coats, floppy ears, delayed sucking, difficulty standing without support, and an abnormal neutrophil: lymphocyte ratio), or had signs of sepsis (injected mucous membranes, hypo- (<36.6°C), or hyperthermia (>38.8°C), depression, petechial hemorrhage (mucous membranes, inner aural surface), abnormal total leukocyte counts, increased immature neutrophils, and hyperfibrinogenemia). Classification of high-risk or low-risk was carried out immediately after parturition.

Foals classified as high-risk received Ampicillin (20 mg/kg, IV, q 8 h; Ampicilina Veterinária® Vetnil, São Paulo, Brazil), flunixin meglumine (0.5 mg/kg, IV, q 12 h; Desflan® Ouro Fino Saude Animal, São Paulo, Brazil) and intravenous fluid therapy as needed for 7 d post-delivery. All foals had a full physical examination performed daily for the first 7 d post-delivery, and survival rates were recorded and used for comparisons among groups. Stillborn animals were accounted for as high-risk foals for effects of comparisons among the different groups, but obviously, no treatment was administered for this type of foal.

2.6. Placental pathology and microbiology

Following the passage of fetal membranes from all of the mares, the weights were recorded and gross examination performed as described elsewhere [1,37]. Specimens (full thickness duplicates of 3 × 3 cm) were collected from chorioallantois (cervical star area, and segments corresponding to the cranial uterine body, and pregnant and non-pregnant horns), amnion, and umbilical cord, submitted for histopathology and aerobic culture. Placental cultures were carried out as described above (subheading 2.3) to demonstrate the presence of S. zooepidemicus. Any grossly abnormal placental areas, other than specified above, were also fixed in formalin for
further histological evaluations. Stillborn foals and foals that had died after delivery had a standard necropsy
performed which included tissue (spleen, liver, lungs, heart, kidneys, and brain) for histopathologic and
microbiological evaluations. Gross and histological evaluations were conducted to confirm ascending placentitis
and to assess the effects of groups.

Histological sections (3- to 5-µm thick) from various tissues were mounted on glass slides and stained
with standard hematoxylin and eosin. Blinded histological evaluations were carried out by an experienced
pathologist. Based on the histological assessment, fetal membranes were classified as having no significant
lesions, or lesions compatible with acute or chronic placentitis [1]. The presence of bacteria or no further lesions
were recorded, and results are described below.

2.9. Statistical analyses

All analyses were performed using Statistix 9.0 software (Analytical Software, Tallahassee, Florida,
USA). Normality was assessed by the Shapiro-Wilk test. Continuous data (time from induction of placentitis to
delivery, gestational length, foal weight, placental weight and its time for release) were analyzed by ANOVA one
way. Hormone concentrations were analyzed by ANOVA repeated measures. When significant, posthoc
comparisons were made by the least-significant difference test. Fisher’s exact test was used to analyze categorical
data (clinical signs, premature chorioallantois separation from the endometrium, dystocia, fetal membranes
pathological features, microbiology (uterus, fetal membranes, and amniotic fluid), high-risk foals at parturition,
and foal survival). Statistical significance was set at p<0.05, whereas statistical tendency was defined as 0.05≤ p
< 0.1. Continuous results were expressed as mean ± SEM, whereas categorical results were represented as
percentage and proportions to facilitate interpretation.

3. Results

3.1. Clinical signs of ascending placentitis

None of the healthy control mares showed premature mammary gland development or purulent vulvar
discharge, whereas 89% (n=34/38) of all inoculated mares started to show purulent vulvar discharge by 48 h post-
intracervical inoculation (Table 3). It is worth noting that all four mares not showing vulvar discharge after
experimental induction of ascending placentitis were allocated to the INOC group. As anticipated [29], only 31%
(n=12/38) of the mares showed mammary gland development by 48 h post-inoculation, with no significant
differences between groups (Table 3). However, for the INOC (i.e. group that did not receive treatment for
placentitis), only one mare presented mammary gland development by 48 h post-inoculation (Table 3). Experimental induction of ascending placentitis resulted in increased CTUP values (92%, n=35/38) and placental separation (95%, n=36/38) across all groups, while gestationally age-matched control mares had CTUP values that remained within normally reported ranges [35] (Table 3). Three mares in the INOC group did not present an increase in CTUP values. Two of these mares with no increased CTUP and no placental separation aborted by 24 h and 48 h post-inoculation. One mare with no increase in CTUP, but with placental separation, delivered a premature septic foal by 48 h post-inoculation (at 297 d of gestation). This foal died 12 h post-delivery with sepsis.

3.2. Time from inoculation to delivery, gestation length, and occurrence of dystocia

Following intracervical inoculation, mares in the INOC group had the highest number of dystocias and premature parturitions (Table 4) (p<0.05). The TMS+FM+ECP group had the longest time from inoculation to delivery. Gestation length of TMS+FM+ECP and TMS+FM+ALT+ECP groups were not significantly different than that of healthy CONT group (Table 4).

3.3. Foal survival

Foal survival at parturition and 7 d post-delivery were not significantly different for all groups of mares with experimentally induced ascending placentitis receiving any therapeutic regimen and not significantly different than control mares (p>0.05), but higher than mares in the INOC group (p<0.05) (Table 6). Overall, 48% (n=22/46) foals were classified as high-risk. Groups receiving the TMS+FM+ECP and TMS+FM therapeutic regimens had the lowest rates of foals classified as high-risk immediately after parturition (Table 6). There were nine stillborn foals; seven of them experienced dystocia (INOC group), whereas, the other two animals did not experience problems with the delivery (TMS+FM+ALT; TMS+FM+ALT+ECP). Foal clinical data are not presented here as it was outside the scope of this manuscript.

3.4. Fetal membranes expulsion and pathology

Placental weight and time for passing fetal membranes were not significantly different between healthy control mares and mares with experimentally induced ascending placentitis (Table 5). Two mares had retained fetal membranes (>3 h expulsion time). One mare with retained fetal membranes for 6 h (INOC group), while the second mare had retained fetal membranes for 4 h (TMS+FM+ECP group).
There was a higher number of premature chorioallantois separations from the endometrium ("red-bag") in mares with induced ascending placentitis from the INOC group (p<0.05) (Table 6). Regardless of the treatment group, there was no significant difference in time for placental release between mares showing (29.3 ± 10.7 min) or not (45.3 ± 9.3 min) "red-bag" at parturition.

Mares treated with TMS+FM and mares in the INOC group had the lowest frequency of gross lesions in the fetal membranes in comparison with the other placentitis groups (p<0.05) (Table 6). Recorded gross abnormalities (55%, n=21/38) were those typically reported in ascending placentitis and consisted of thickening, edema, and purulent or serosanguineous exudate at the cervical star region [1]. Not infrequently, the lesions extended ventrally into the uterine body of the chorioallantois.

Histopathologic evaluations revealed that 45% (n=17/38) of mares had acute placentitis, 18% (n=7/38) had chronic placentitis, and 37% (n=14/38) of fetal membranes from mares with experimentally induced placentitis did not have significant lesions (Table 5). Fetal membranes with acute placentitis had suppurative inflammation with intense neutrophilic infiltration in the cervical star region, and segments corresponding to the uterine body and pregnant horn (Fig 1), whereas chronic placentitis was characterized by mononuclear inflammatory cells in the microcotyledonary trophoblast or chorionic stroma, and also by mild to moderate necrosis (Fig 1). Mares in the INOC group aborted shortly after intracervical inoculation of bacteria (typically within 48 h), with 50% of the mares not showing gross or histological lesions, despite the presence of bacteria in the chorioallantois, amnion, and umbilical cord (Table 5).

Stillborn and non-surviving foals within the first seven days post delivery, presented histological lesions in the central nervous system (neuron chromatolysis, and edema and vacuolization of microglial cells), lungs (atelectasis and presence of basophilic bacterial colonies), adrenal glands (diffuse to extensive hemorrhage), kidneys (necrosis, congestion, hemorrhage and mild tubular necrosis), liver (congestion, scant necrosis and hemorrhage), intestines (villous necrosis), spleen (hemorrhage), and heart (hemorrhage). Collectively, these findings were consistent with hypoxia and sepsis.

Data from the subset of samples described above (Table 6) were combined to assess the effects of isolating S. zooepidemicus in the fetal membranes, amniotic fluid on foal survival and being classified as high risk. The presence of S. zooepidemicus in fetal membranes (7/9 dead vs. 2/9 live foals) tended to negatively affect foal survival at parturition (p=0.05) and increased the percentage of foals classified as high-risk (12/17 high-risk vs. 5/17 low-risk foals; p=0.02). Similarly, negative culture for S. zooepidemicus in the amniotic fluid resulted in
better foal survival at parturition (19/22 survived vs. 3/19 died; \(p=0.03 \)) and resulted in higher proportion of foals classified as low-risk (18/22 low-risk vs. 4/22 high-risk foals; \(p=0.01 \)).

4. Discussion

The findings in the present study appear to support the clinical impression by practitioners that estrogen therapy may aid recovery from ascending placentitis, as evidenced by normal gestation length and no pregnancy loss or premature foals in TMS+FM+ECP group. Of interest, this therapeutic combination did not, however, improve foal survival (at parturition and 7 d post-delivery) as this parameter was not different across mare groups under different therapeutic regimens. Notably, mares in the other groups had more foals classified as high-risk than healthy CONT and TMS+FM+ECP groups. This further supports our hypothesis that therapy with a long-acting estrogen (ECP) reduced complications of experimentally induced ascending placentitis. If we extrapolate our findings to naturally-occurring cases, adding estrogen to the therapeutic regime for mares with placentitis could be beneficial to mares and foals, having a long-lasting and positive economic impact. Foals born of mares with placentitis are typically underdeveloped, with clinical evidence of prematurity, dysmaturity, maladjustment syndrome, and most become septic [38]. Term foals from these mares are also at high-risk for perinatal diseases that require a high level of intensive care; that results in exorbitant expenses to the owner despite the fair prognosis for recovery [38].

Estrogens appear to be essential for fetal development and maturation [39], but not necessary for pregnancy maintenance [40]. Surgical removal of the fetal gonads decreased DHEA and its conjugated form (DHEA-sulfate) in maternal circulation [39,41]. Since DHEA is used as a precursor for estrogens by the fetal membranes and mare’s endometrium [18,42], fetal gonadectomy reduced serum concentrations of estrogen and PGF2α (which is intimately controlled by estrogen) and resulted in obstetrical complications due to delayed stage II of labor, and delivery of underdeveloped and immature foals [39,41]. A recent study using letrozole, a potent aromatase inhibitor, reduced peripheral estrogen concentration by 20% in mares carrying healthy pregnancies [40]. Foals born from letrozole-treated mares had lower birth weight than foals born from control mares. Interestingly, when ECP was included in the combination TMS+FM+ALT (as group TMS+FM+ALT+ECP of this study), foal weight at parturition increased. These studies appear to support the use of estrogen supplementation for mares with placentitis to maintain normal gestation length and allow proper fetal development and maturation before delivery. While estrogens have been empirically advocated to treat equine placentitis in practice [24], it remains to be determined by case-control and cohort prospective studies whether recovery from spontaneous placentitis could be improved with estrogens.
Progestins supplementation has long been recommended as a standard therapeutic practice for women with pregnancy complications (e.g. short cervix, chorioamnionitis, and recurrent idiopathic miscarriage) [43]. In the horse, there is no evidence that inclusion of a progestin is necessary for management of placentitis [6]. In fact, a study in mares with experimental placentitis treated with altrenogest, TMS, and different combinations of anti-inflammatoryes (acetylsalicylic, dexamethasone) concluded that TMS alone appeared to be a superior treatment [30]. However, it is important to mention that the study used a small dose of altrenogest (estimated in 11 mg/mare or 2 mg/50kg of body weight), which is a fourth of the recommended dose (44 mg/mare). Our results support Christensen et al. [30] findings, in which a combination of TMS+FM+ALT, did not improve mare or foal parameters in comparison to TMS+FM, though, the group from Mississippi did not use flunixin meglumine.

A study with a prostaglandin-induced model for the abortion of mares in the first trimester of gestation demonstrated that altrenogest supplementation (44 mg/day/mare) was superior to progesterone (300 mg/day/mare) at maintaining pregnancy and preventing generation of endogenous prostaglandin after daily treatment with cloprostenol [44]. Since placentitis increases prostaglandin concentrations in the fetal membranes and fluids [9], with a subsequent increase in uterine contractility and abortion [9,11], it has been assumed that inclusion of progestin is necessary to keep the uterus quiescent and prevent prostaglandin release [6]. Under this assumption, we included altrenogest in two treatment regimens to assess its efficacy. From our results, altrenogest did not appear to make a difference in outcome for mares with experimentally induced ascending placentitis. This should not be surprising as a recent large prospective study concluded that progesterone supplementation did not improve pregnancy outcome in women with a history of recurrent miscarriage [45]. However, it should be taken in consideration that horses and humans are not related mammals which have different pregnancy problems and management strategies.

Premature placental separation from the endometrium is one of the leading causes of perinatal asphyxia in foals [2]. Presumably, premature separation will result in oxygen deprivation pre- and intrapartum [2], as the mare has a long vagina. If unruptured chorioallantois is found protruding through the vulva, this means that a vast portion of the chorioallantois is detached from the endometrium, and the foal must be delivered immediately to prevent neonatal asphyxia. As expected, experimentally induced placentitis was associated with premature chorioallantois separation from the endometrium across groups, and absence of any treatment resulted in the highest occurrence of this condition (80%, n=8/10); however, regardless of group, treatment for placentitis reduced the occurrence of “red-bag.”
Dystocia is reported to occur ~10% of parturitions in light horse breeds [46,47]. Given this reported prevalence, experimentally induced placentitis with no treatment resulted in a seven-fold increase (70%) in dystocias. This is probably because most foals were stillborn (78%, n=7/9). It has been suggested that during the first to second stages of parturition, the foal’s inner ear is involved and helps the foal to position itself and assume proper orientation and posture in the birth canal. This will not happen if the foal is dead, thus explaining the higher predisposition for dystocia with stillborn foals [48,49]. Interestingly, all nine cases of dystocia were due to malposture abnormalities (head and limbs), with a lateral/ventral deviation of the head and neck being observed in 66.7% (n=6/9), and the types of dystocia found herein were consistent with the most prevalent types of dystocia reported in referring hospitals [50].

Retained fetal membranes were observed in 4.3% of mares (n=2/46); this is a very low occurrence of retained fetal membranes, especially given that 19% (n=9/46) of mares experienced dystocia, which is a known risk factor for retained fetal membranes in mares [51]. The rate of retained fetal membranes was much lower than two previous large retrospective studies involving Standardbred mares (3,456 parturitions) in Canada [51], and Thoroughbreds (1,432 parturitions) in Japan [52], that recorded 5.2-10% of foalings to have retained fetal membranes. Breed differences and environment can explain the low occurrence of retained fetal membranes observed. It seems that retained fetal membranes have a lower prevalence in the Southern region of Brazil, as in a study involving 270 parturitions of Thoroughbred mares retained fetal membranes were observed in 4.8% of foalings [53].

Controversy exists with regards to the duration of the treatment for placentitis, with some authors suggesting that mares should be treated for a short period (6-15 d) [27,28,30], whereas others suggest that treatment should be continued until parturition [15,29,54]. In this study, mares were treated for 10 d following the recommendations by Leblanc [27]. While we cannot assess whether treatment of mares for a prolonged period could have resulted in superior outcomes, our results are consistent with a previous publication for mares receiving treatment for an extended period (i.e. inoculation to parturition) [29]. This suggest that the duration of treatment used in the current study was adequate.

As aforementioned, the inclusion of antimicrobials is aimed at eliminating and reducing the spread of microorganisms through the fetal membranes and fetus [6,27]. However, there are limited therapeutic options for placentitis treatment, as only penicillin, gentamicin, and TMS are known to cross the placenta and to achieve high concentrations in the fetal fluids, and to be apparently safe for the fetus [28,55]. Since TMS is a cheap and broad spectrum antimicrobial, we elected to use this drug in the present study. For those reasons, this drug has been
extensively used by previous authors for experimental placentitis [29,30,56] and spontaneous placentitis [15]. In fact, Christensen et al. [30], obtained apparently superior outcomes when mares were treated with TMS in comparison to other treatments. While we cannot be certain whether the use of a different antimicrobial would have changed the outcome for various parameters assessed, this seems unlikely.

Recent evidence indicated that prolonged treatment for placentitis (from induction until parturition) suppressed bacterial growth, rather than eliminating bacteria, as mares treated for experimentally induced placentitis had a remarkable recovery of *S. zooepidemicus* in the uterus after delivery [29,57]. Similarly, despite treatment, we were still able to isolate *S. zooepidemicus* from the uterus, fetal membranes, and amniotic fluid from mares with experimentally induced ascending placentitis.

In conclusion, mares with experimentally induced ascending placentitis benefited from estrogen supplementation, but progestin supplementation did not appear to make a difference in outcomes.

Acknowledgments

CAPES and FAPERGS foundations are acknowledged for providing scholarships to graduate students (L.O.A., L.S.F., I.S.F., F.M.P. and V.M.), and post-doctoral fellowship (B.R.C. Estagio Senior no Exterior Processo CAPES#99999.005570/2015-08). Our thanks to Dr. Katarzyna Dembek for her assistance with laboratory techniques.

Competing interests

None.

References

Table 1. Drugs Therapeutic armamentarium used to treat mares with experimentally-induced ascending placentitis

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Dose</th>
<th>Route</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimethoprim-sulfamethoxazole</td>
<td>30 mg/kg</td>
<td>IV, q12 for 10d</td>
<td>Trissulfim®, Ouro Fino Saude Animal, São Paulo, Brazil</td>
</tr>
<tr>
<td>Flunixin meglumine</td>
<td>1.1 mg/kg</td>
<td>IV, q24h for 10d</td>
<td>Desflan®, Ouro Fino Saude Animal, São Paulo, Brazil</td>
</tr>
<tr>
<td>Altrenogest (long action)</td>
<td>0.088 mg/kg</td>
<td>IM, q 7d for 2 treatments</td>
<td>Altrenogest®, Botupharma, São Paulo, Brazil</td>
</tr>
<tr>
<td>Estradiol cypionate</td>
<td>10 mg/mare</td>
<td>IM, q 3d for 3 treatments</td>
<td>E.C.P.®, Zoetis, São Paulo, Brazil</td>
</tr>
</tbody>
</table>
Table 2. Sensitivity and limits of detection reported by the manufacturer for antiserum for the different assays used.

<table>
<thead>
<tr>
<th></th>
<th>Intra-assay</th>
<th>Inter-assay</th>
<th>Sensitivity</th>
<th>Standard curve</th>
<th>Catalog #</th>
</tr>
</thead>
<tbody>
<tr>
<td>P4</td>
<td>4.9</td>
<td>6.5</td>
<td>0.02 ng/mL</td>
<td>0.15-80 ng/mL</td>
<td>07-270102</td>
</tr>
<tr>
<td>17-OHP</td>
<td>12</td>
<td>12</td>
<td>0.03 ng/mL</td>
<td>0.1-25 ng/mL</td>
<td>07-271102</td>
</tr>
<tr>
<td>17β estradiol</td>
<td>3.5</td>
<td>7.6</td>
<td>7.4 pg/mL</td>
<td>10-3000 pg/mL</td>
<td>07-238102</td>
</tr>
<tr>
<td>Cortisol</td>
<td>8.9</td>
<td>9.3</td>
<td>0.0017 µg/mL</td>
<td>0.01-1 µg/mL</td>
<td>07-221102</td>
</tr>
</tbody>
</table>

P4: progesterone, 17-OHP: 17α-hydroxyprogesterone.
Table 3. The clinical signs (vulvar discharge, premature mammary gland development, and ultrasonographic features of the caudal placental pole), 48h after induction of placentitis and in the end of treatment (10 days after induction – 10d), associated with experimentally-induced ascending placentitis and gestationally age-matched healthy control mares.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Vulvar discharge</th>
<th>Mammary development</th>
<th>Increased CTUP >9 mm</th>
<th>Placental separation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>48h (%) n</td>
<td>10d (%) n</td>
<td>48h (%) n</td>
<td>10d (%) n</td>
</tr>
<tr>
<td>CONT (=8)</td>
<td>0b 0</td>
<td>0b 0</td>
<td>0 0 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>TMS+FM (n=8)</td>
<td>100a 8</td>
<td>75a 6</td>
<td>25 2 25</td>
<td>2 100a 8</td>
</tr>
<tr>
<td>TMS+FM+ALT (n=8)</td>
<td>100a 8</td>
<td>62.5a 5</td>
<td>50 4 50</td>
<td>4 100a 8</td>
</tr>
<tr>
<td>TMS+FM+ALT+ECP (n=6)</td>
<td>100a 6</td>
<td>33.3ab 2</td>
<td>33.3 2 33.3</td>
<td>2 100a 6</td>
</tr>
<tr>
<td>TMS+FM+ECP (n=6)</td>
<td>100a 6</td>
<td>0b 0</td>
<td>50 3 50</td>
<td>3 100a 6</td>
</tr>
<tr>
<td>INOC (n=10)</td>
<td>60b 6</td>
<td>60b 6</td>
<td>10 1 10</td>
<td>1 70b 7</td>
</tr>
</tbody>
</table>

CONT: Healthy control group; TMS: Trimethoprim-sulfamethoxazole; FM: Flunixin meglumine; ALT: altrenogest; ECP: estradiol cypionate (ECP); INOC: inoculation and no treatment. CTUP: Combined thickness of uterus and placenta. All mares were enrolled in this experiment by 300 d of gestation and randomly assigned to the six groups. Different letters within columns denote statistical significance with Fisher’s exact test.
Table 4. Time from inoculation to delivery, gestation length and occurrence of premature chorioallantois separation from endometrium and dystocia for groups with experimentally induced ascending placentitis and gestationally age-matched healthy control group.

<table>
<thead>
<tr>
<th>Groups (n)</th>
<th>Time from inoculation-delivery (d)</th>
<th>Gestational length (d)</th>
<th>Premature chorioallantois separation from the endometrium (%)</th>
<th>Dystocia (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SEM</td>
<td>Range</td>
<td>Mean ± SEM</td>
<td>Range</td>
</tr>
<tr>
<td>CONT (n=8)</td>
<td>35 ± 4.9<sup>ab</sup></td>
<td>20 – 50</td>
<td>335 ± 5<sup>ab</sup></td>
<td>320 – 350</td>
</tr>
<tr>
<td>TMS + FM (n=8)</td>
<td>27.6 ± 8.6<sup>b</sup></td>
<td>10 – 82</td>
<td>322 ± 6.5<sup>b</sup></td>
<td>310 – 353</td>
</tr>
<tr>
<td>TMS + FM + ALT (n=8)</td>
<td>21.3 ± 4.1<sup>b</sup></td>
<td>9 – 39</td>
<td>322 ± 3.8<sup>b</sup></td>
<td>312 – 339</td>
</tr>
<tr>
<td>TMS + FM + ALT + ECP (n=6)</td>
<td>22.2 ± 6.4<sup>b</sup></td>
<td>5 – 52</td>
<td>330 ± 11.2<sup>ab</sup></td>
<td>317 – 352</td>
</tr>
<tr>
<td>TMS + FM + ECP (n=6)</td>
<td>46 ± 4.2<sup>a</sup></td>
<td>36 – 65</td>
<td>346 ± 5.2<sup>a</sup></td>
<td>336 – 365</td>
</tr>
<tr>
<td>INOC (n=10)</td>
<td>3.5 ± 0.7<sup>c</sup></td>
<td>1 – 7</td>
<td>305 ± 2.3<sup>c</sup></td>
<td>296 – 307</td>
</tr>
</tbody>
</table>

CONT: Healthy control group; TMS: Trimethoprim-sulfamethoxazole; FM: Flunixin meglumine; ALT: altrenogest; ECP: estradiol cypionate (ECP); INOC: inoculation and no treatment. CTUP: Combined thickness of uterus and placenta. All mares were enrolled in this experiment by 300 d of gestation and randomly assigned to the six groups. Different letters within columns denote differences with LSD’s test (time from inoculation to delivery, and gestational length) or Fisher’s exact test (premature chorioallantois separation from the endometrium and dystocia) (p<0.05).
Table 5. Fetal membranes expulsion and pathological placental features from mares with experimentally induced ascending placentitis and gestationally age-matched healthy control mares.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Placental weight (kg)</th>
<th>Placental release time (min)</th>
<th>Gross lesions (%)</th>
<th>n</th>
<th>acute</th>
<th>chronic</th>
<th>NSF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SEM</td>
<td>Range</td>
<td>Mean ± SEM</td>
<td>Range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONT (n=8)</td>
<td>4.8 ± 0.3</td>
<td>2.8 – 5.6</td>
<td>32.4 ± 5.1</td>
<td>15 – 50</td>
<td>0<sup>c</sup></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TMS + FM (n=8)</td>
<td>5.1 ± 0.6</td>
<td>2.9 – 8.2</td>
<td>41.5 ± 13.9</td>
<td>1 – 110</td>
<td>50<sup>b</sup></td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>TMS + FM + ALT (n=8)</td>
<td>5.5 ± 0.4</td>
<td>4.0 – 7.9</td>
<td>34.5 ± 10.2</td>
<td>10 – 92</td>
<td>87.5<sup>a</sup></td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>TMS + FM + ALT + ECP (n=6)</td>
<td>4.7 ± 0.6</td>
<td>3.0 – 6.8</td>
<td>40.0 ± 15.0</td>
<td>15 – 107</td>
<td>66.7<sup>a</sup></td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>TMS + FM + ECP (n=6)</td>
<td>5.1 ± 0.5</td>
<td>3.3 – 6.8</td>
<td>66.3 ± 35.1</td>
<td>16 – 240</td>
<td>66.7<sup>a</sup></td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>INOC (n=10)</td>
<td>5.9 ± 0.6</td>
<td>3.5 – 9.5</td>
<td>83.4 ± 33.4</td>
<td>5 – 360</td>
<td>20<sup>ac</sup></td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

CONT: Healthy control group; TMS: Trimethoprim-sulfamethoxazole; FM: Flunixin meglumine; ALT: altrenogest; ECP: estradiol cypionate (ECP); INOC: inoculation and no treatment. CTUP: Combined thickness of uterus and placenta. All mares were enrolled in this experiment by 300 d of gestation and randomly assigned to the different groups. Different letters within columns denote differences with LSD’s test (placental weight and time to release), or Fisher’s exact test (placental pathological features). *These fetal membranes had obvious bacterial colonies in the chorioallantois, amnion, and umbilical cord.
Table 6. Foal parameters (survival rates, classified as high-risk, and body weight) born from mares with experimentally induced ascending placentitis and gestationally age-matched healthy control mares.

<table>
<thead>
<tr>
<th>Groups (n)</th>
<th>Survival at parturition (%)</th>
<th>Foals classified as high-risk (%)</th>
<th>Survival at 7 d delivery (%)</th>
<th>Body weight at birth (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>Mean ± SEM</td>
</tr>
<tr>
<td>CONT (n=8)</td>
<td>100<sup>a</sup></td>
<td>0<sup>b</sup></td>
<td>100<sup>a</sup></td>
<td>39.2 ± 2.4<sup>a</sup></td>
</tr>
<tr>
<td>TMS + FM (n=8)</td>
<td>100<sup>a</sup></td>
<td>75<sup>a</sup></td>
<td>75<sup>a</sup></td>
<td>31.1 ± 1.7<sup>c</sup></td>
</tr>
<tr>
<td>TMS + FM + ALT (n=8)</td>
<td>87.5<sup>a</sup></td>
<td>50<sup>a</sup></td>
<td>87.5<sup>a</sup></td>
<td>28.4 ± 1.5<sup>c</sup></td>
</tr>
<tr>
<td>TMS + FM + ALT + ECP (n=6)</td>
<td>87.5<sup>a</sup></td>
<td>50<sup>a</sup></td>
<td>66.7<sup>ab</sup></td>
<td>32.5 ± 2.7<sup>bcd</sup></td>
</tr>
<tr>
<td>TMS + FM + ECP (n=6)</td>
<td>100<sup>a</sup></td>
<td>0<sup>b</sup></td>
<td>100<sup>a</sup></td>
<td>36.4 ± 1<sup>ab</sup></td>
</tr>
<tr>
<td>INOC (n=10)</td>
<td>30<sup>b</sup></td>
<td>90<sup>a</sup></td>
<td>20<sup>b</sup></td>
<td>29.4 ± 1.8<sup>c</sup></td>
</tr>
</tbody>
</table>

CONT: healthy control group; TMS: Trimethoprim-sulfamethoxazole; FM: Flunixin meglumine; ALT: altrenogest; ECP: Estradiol cypionate (ECP); INOC: inoculation and no treatment. All mares were enrolled in this experiment by 300 d of gestation and randomly assigned to the different groups. Different letters within columns denote differences with Fisher’s exact test (foal survival and risk classification), or with LSD’s (body weight) (p<0.05).
Table 7. The frequency of positive aerobic culture for *Streptococcus zooepidemicus* obtained from the uterus, fetal membranes, and amniotic fluid from post-partum mares with experimentally induced ascending placentitis and gestationally age-matched healthy control mares.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Uterine time 1 (%)</th>
<th>n</th>
<th>Uterine time 2 (%)</th>
<th>n</th>
<th>Fetal membranes (%)</th>
<th>n</th>
<th>Amniotic fluid (%)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONT (n=8)</td>
<td>0<sup>b</sup></td>
<td>0/7</td>
<td>0<sup>b</sup></td>
<td>0/7</td>
<td>12.5<sup>c</sup></td>
<td>(1/8)</td>
<td>0<sup>b</sup></td>
<td>0/6</td>
</tr>
<tr>
<td>TMS+FM (n=8)</td>
<td>40<sup>a</sup></td>
<td>2/5</td>
<td>0<sup>b</sup></td>
<td>0/5</td>
<td>50<sup>ab</sup></td>
<td>(4/8)</td>
<td>0<sup>b</sup></td>
<td>0/3</td>
</tr>
<tr>
<td>TMS+FM+ALT (n=8)</td>
<td>60<sup>a</sup></td>
<td>3/5</td>
<td>20<sup>a</sup></td>
<td>1/5</td>
<td>71.4<sup>ab</sup></td>
<td>(5/7)</td>
<td>16.7<sup>ab</sup></td>
<td>1/6</td>
</tr>
<tr>
<td>TMS+FM+ALT+ECP (n=6)</td>
<td>33.3<sup>a</sup></td>
<td>1/3</td>
<td>33.3<sup>a</sup></td>
<td>1/3</td>
<td>16.7<sup>bc</sup></td>
<td>(1/6)</td>
<td>40<sup>a</sup></td>
<td>2/5</td>
</tr>
<tr>
<td>TMS+FM+ECP (n=6)</td>
<td>50<sup>a</sup></td>
<td>2/4</td>
<td>50<sup>a</sup></td>
<td>2/4</td>
<td>33.3<sup>bc</sup></td>
<td>(2/6)</td>
<td>40<sup>a</sup></td>
<td>2/5</td>
</tr>
<tr>
<td>INOC (n=10)</td>
<td>100<sup>a</sup></td>
<td>2/2</td>
<td>50<sup>a</sup></td>
<td>1/2</td>
<td>90<sup>a</sup></td>
<td>(9/10)</td>
<td>60<sup>a</sup></td>
<td>3/5</td>
</tr>
</tbody>
</table>

CONT: Healthy control group; TMS: Trimethoprim-sulfamethoxazole; FM: Flunixin meglumine; ALT: altrenogest; ECP: estradiol cypionate (ECP); INOC: inoculation and no treatment. Uterine time 1: Swab collected immediately after placental release. Uterine time 2: uterine swab collected by 24 h post-delivery. A subset of mares from each group had cultures performed. The proportion of samples with a positive culture for *S. zooepidemicus* are represented within brackets. Different letters within columns denote differences with Fisher’s exact test (p<0.05).